If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10+7x=0
a = 1; b = 7; c = -10;
Δ = b2-4ac
Δ = 72-4·1·(-10)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{89}}{2*1}=\frac{-7-\sqrt{89}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{89}}{2*1}=\frac{-7+\sqrt{89}}{2} $
| 3t+4=5t-72 | | x+2/x+15=375 | | 5x^{2}-15x+80+x^{2}+25-4x^{2}+8x+66=180 | | 20-5x=2x-8 | | 2u-41=u-14 | | -1-4x=-x+11. | | 40h+10-28-49h=7h+20-17h | | 2/7y+3/4=1/7y+4/3 | | 9x-5=177 | | 2a-12=4a-78 | | 4x-3=3/4(10x-4) | | 5x-6=8x-60 | | 4x+8=7x-17 | | F(12)=-3x+2 | | s=3s-46 | | 15x+65=155 | | 3y-31+4y-6=180 | | 62/30+x=2/x | | (1.05/14)x=0.105 | | 2x+41+x=180 | | 4y-6=3y-31 | | 1/4p+8=1/3p | | (1.05*14)x=0.105 | | -1/2*6/7^2+5/6*6/7=x | | 5v-57=v+83 | | b/3.1=-4.9 | | 3w-63=w-9 | | 7w-51=w+21 | | 1.4x=-13.3 | | 2w-34=w | | -55.9=-4.3w | | -3.4+x=7.4 |